Formula SAE Electric Drive Control

Project Design Report

Design Team 05
Nick Gatta
Alex Klein

Alex Spickard

Tyler Zoner

Faculty Advisor: Dr. Sozer

November 15, 2012

Table of Contents

TADIE OF FIGUIESoeeiiiiieciiiiec ettt et et e eb e e eb e s aeesaeessaeenssaeennnas ii
LSt O TADIES ..vvecvieiiieieieicre ettt s sr e b se e e s besraessaesr e e e e sneennas 1il
Problem Statement...........oc.oiiiiiiiiii ittt st be e e ens 1
INEEA .ottt ettt e et e e e e e etbe e e ebbe e e eb e e e ebbe e e b be e e b bt e b be e b ae et be et ae et aeenssaeenneas 1
ODBJECLIVE ...ttt ettt e et et ae e e b ae e ebaeeebaesenbaesensae et seesssessssaeenssaeenssseanssaens 1
Backgroundooiiiiiiii e ettt ne e aes 1
Marketing REQUITEIMENTSccviieiiiieiieieciieeeciieeectie e eeeraeeeesseeessaeeessaeesssaeesssaeesssaeessees 2
ODBJECHIVE TTOE ...ttt ettt ettt e et e et e e e e e ebeeesbeenseeensaesseeasaeenneenns 3
Design Requirement SpecifiCationcceevviiirieiieeiecee e crie et e erae s e eseeens 4
Accepted Technical Desi@ncoooiiiiiiiiiiii ettt 6
SEIISOTS .ttt ettt e e et e e e s saa e e e et bt ee et beae e sbae et e e eb bt e e et beae e nebeaeeeeannae s 6
HArdware DIESIZN........ccouiiiiiiiieeie ettt ettt s baeesbe e ne e e s e et beenbeeeneaenees 6
HArdware DESIZN.........covviiiiiieieeiiecie ettt et eeaae et eae e esaeesaeesseesaeeeasaeesaeesseenneeens 11
Hardware SChematiCooiiiiiiiiiii ettt et 15
Motor and Battery SIZINGc.oooiiiiiiiiiieeieeie ettt et et es e eaae s s e 16
SeNSOT CalCULAtION. ..ottt ettt et e ss e ebbeenbe e neaeeas 22
WITINE SYSTEIM. ...ttt ittt ettt easces s e ebaeetbeessseeasaeesseesseeasssensaeesseesseensssens 23
SOFEWATE DIESIZIL ...ttt ettt ea e eateesbe et e e s eeesbeenbeeeneaeeaes 23
Project SChEedUIESooviiiiieciie et ettt e rs s sa e e st aeerbe s ensaesaaeesaes 34
Design Team INfOormationccooooiiiiiiiiiiiiie ettt 36
RETEIEIICES ... ecvveevieitieitiie ittt sttt et st s e e be s be s baesbeesa e s e esbesrbesbse st aesaansearseas 37
APPEIAIX oottt b e e ea e et ae et ae et ae et aeetsaeenntaeennnaeenneas 38
Data SREELS ...cveeieiiiiiiiciectie sttt s e beer b eraesreens 38

T 1 o) (TSSO OO SO RRPUPPPRRRORTPN 38
MICTOCONITOIIETcvveivvectie sttt st sr s sr e b e e e s e ebesrae st aessans 38
MATLAB Simulations for Power Profile.............ccoiiiiiiiiiii e 38
AcCeleration EVENtcoouiiiiiiiiiiiiicciie ettt e e e s e e ae e ee 38
AULOCTOSS EVENL.....oiiiiiiiiiiii ettt sb e es e et e e eee 40

Table of Figures

Figure 1: OBJECtIVE TICEccvviiiiviiiiiiiiiiiie ittt et ettt et eetae s e esaeessaeesssaeenssaeanssaens 3
Figure 2: Hardware Level 0 Block Diagram............cccccouiiiiiiiiiiiiciiicie et 7
Figure 3: Hardware Level 1 Block Diagram...........cccoooiiiiiiiiiiiiiiiceeeeeee e 8
Figure 4: Hardware Level 2 Block Diagram.............cccoeuveeiiieeiiieciiieciie e 10
Figure 5: Hardware Level 0 Block Diagram.............ccccooiiiieiiiiiiiiiiiiccieciecie e 11
Figure 6: Hardware Level 1 Block Diagram............cccoooiiiiiiiiiiiiiiiieece e 12
Figure 7: Hardware Level 2 Block Diagram.............cccoeuveeiiieciiieciiieciie e 14
Figure 8 Hardware SChematiC........cccueiuveiiiiiiiiiiiiieiiie e cseesiseesrsesseess s ssaessaeessessnsaesaaessaes 15
Figure 9: Graphs of power and acceleration on a 75m acceleration at full throttle.......... 17
Figure 10: The autocross course from Lincoln, Nebraska event 2012.[5]........cccoeevvennen. 18
Figure 11: The endurance course from Lincoln, Nebraska event 2012[5].......cccccvvvennnens 19
Figure 12: Results of the autocross simulation.ccccoooiiiiiiiiiiiiiniee e 21
Figure 13: Results of the endurance simulation.............cccooeveeveeiieiiciieciecieeie e 21
Figure 14: Software Level 0 Block Diagram...........ccccoooiiiiiiiiiiiiiiiiie e 23
Figure 15: Software Level 1 Block Diagram...........cccooviiiiiiiiiiiiiiiiieseee e 24
Figure 16: Software Level 2 Block Diagram............ccccocvviivieiieeiiiiiiiccieciieeie e 26
Figure 17: The overall software architeCturecooiiiiiiiiiiiiiiiiie e 28
Figure 18: Interrupt floW Chartscooueiiiiiiiiiiiiiiiiecciee ettt eaaae e 29
Figure 19: Control Logic flow Chartcc.oooiiiiiiiiiiiiiciciecie et 30
Figure 20: Torque calculation pseudocode..............coouiiiiiiiiiiiiiiiieeieee e 32

i

List of Tables

Table 1:
Table 2:
Table 3:
Table 4:
Table 5:
Table 6:
Table 7:
Table 8:
Table 9:

Table 10:
Table 11:
Table 12:
Table 13:
Table 14:
Table 15:
Table 16:
Table 17:
Table 18:
Table 19:
Table 20:
Table 21:
Table 22:
Table 23:
Table 24:
Table 25:
Table 26:
Table 27:
Table 28:
Table 29:
Table 30:
Table 31:
Table 32:
Table 33:
Table 34:
Table 35:
Table 36:
Table 37:
Table 38:

Engineering ReqUIrements.............ocoeiuiiiiiiiiiiiiiiiie et 5
Formula Electric Drive Control hardware Functional requirements..................... 7
Microcontroller Module Hardware Functional Requirementsc........... 8
Right and Left Motor Controllers Module Hardware Functional Requirements . 8
Brake Sensor Module Hardware Functional Requirementscccccoevvenen.. 9
Wheel Sensor Module Hardware Functional Requirementsc..ccveeunee. 9
Steering Sensor Module Hardware Functional Requirements.................ccccoce..... 9
Throttle Sensor Module Hardware Functional Requirements.................ccc.......... 9
Safety System Module Hardware Functional Requirements...............ccccevevnennee. 9
Signal conditioning module Functional requirements.............c.cccceceevieierieennnen. 10
Voltage regulator module functional requirementscccceeevveeerieerreennnene. 10
Ground fault indicator functional requIrementsccevvveerveevieeesreesvecineenns 10
Safety switches module Functional requirement................cocceeiieiiiiniienniennnen. 10
Formula Electric Drive Control hardware Functional requirements................ 11
Microcontroller Module Hardware Functional Requirements 12
Right and Left Motor Controller Module Hardware Functional Requirements 12
Brake Sensor Module Hardware Functional Requirementsc........... 13
Wheel Sensor Module Hardware Functional Requirementsc.cc....... 13
Steering Sensor Module Hardware Functional Requirements.......................... 13
Throttle Sensor Module Hardware Functional Requirements.......................... 13
Safety System Module Hardware Functional Requirements...............c..ccc...... 13
Signal conditioning module Functional requirements...............cccceeevuveeernnenne. 14
Voltage regulator module Functional requirementscceceveviveivriesvenneenn 14
Ground fault indicator Functional requirements...............ccccueeeuiinieinniienieenenne 14
Safety switches module Functional requirement.............c...ccovvveevvieeiiiecnnnnnne. 14
Formula Electric Drive Control software Functional requirements................. 23
Drive Control Module software Functional requirements..................ccccueeuneee. 25
Input signal filtering and processing module Functional requirements............ 25
Output signal processing module Functional requirements..............c..ccveenneene, 25
Driver display module Functional requirementscccceeievieinniieniiecneene. 25
BMS communication module Functional requirements..............cc..cccoeevveenneene. 25
Drive Control Module Functional requirements...............cocueeriinieinniieniiecnenne 27
Input Signal Processing Module...........ccccooviiiiiiiiiiieciiieciieccrie e 27
Output Signal Processing Module Functional requirementsc....c....... 27
Driver Display Module Functional requirements.............ccccueeveiveinneieninecnenne 27
BMS Communication Module Functional requirements..............ccc.ccovreennnn. 27
Final Design Gantt...........ccceciiviiiieiieciiecie e essssssaessaesseessesssaessaessseens 34
Proposed Implementation Gantt Chartcoociiiiiiiiiniii e 35

1l

Abstract

The Formula SAE Electric Vehicle requires a functioning drive control system. The drive
control system uses sensors to convert inputs from the driver into torque outputs for the
motor controller that will ensure the vehicle moves quickly, easily, comfortable, and
safely.

Problem Statement

Need

In this project, a drive control system for an electric racecar is needed. This drive control
system must enable a driver to be competitive on the racetrack in both speed and
efficiency. It must also meet all requirements of the Formula SAE Electric rules and
regulations. Adherence to these rules ensures that the vehicle is safe, and is required to
foster fair competition.

Objective

Our objective is to create a drive control system that can compete strongly against those
from the competing teams. It must also complement the battery management system
created by our fellow ECE students, and the rest of the car created by the Mechanical
Engineering teams. The drive control system should convert inputs from the driver into
outputs for motors and the battery system to enable the driver to race quickly, easily,
comfortably, and safely.

Background

Formula SAE is a design competition for undergraduate and graduate university students
organized by the Society of Automotive Engineers. Formula Electric is a class that
requires students to design and build a small, formula style, electric, autocross vehicle.
Cars are judged over the course of three days in a number of static and dynamic events
including: technical inspection, cost, presentation, design, performance and endurance.

Teams must follow an extensive set of rules and regulations in order to perform in
competition. Mechanical and Electrical engineering design teams must work on
individual sub systems. Electrical Engineering groups are responsible for Drive Control
and Battery Management.

Electric cars have been gaining popularity in the last several years. Concerns over the
future of our environment have resulted in an increased focus in green technology. With
this increased focus, the popularity of electric hybrid vehicles as well as electric vehicles

1

has skyrocketed. As the popularity of electric vehicles increases, pollution rates as well as
fossil fuel dependency will decrease. There are a number of useful electric motor
qualities that are beneficial in both everyday driving and racing. With the excellent
acceleration capabilities of electric motors, and the short distances in racing, electric
motors seem to be a good choice for small racecars.

Internal combustion powered vehicles require significant amounts of gearing to
effectively transmit power to the wheels of a vehicle. Around 60% of energy is lost in the
form of heat in internal combustion engines. Electric vehicles have the option of putting a
separate motor on each individual wheel. This eliminates mechanical transmission losses,
and reduces weight and volume due to the replacement of the mechanical drivetrain with
a single small motor at each wheel.[1] Removal of the mechanical drivetrain eliminates
potentially damaging vibrations on the vehicle. An all-electric vehicle is more reliable
and nearly silent compared to an internal combustion powered vehicle.

Electric motor vehicles typically have a motor on each rear wheel. This creates a
redundancy in the event that a motor is inoperable. An internal combustion engine
powered vehicle performs traction control by lowering the engine power and braking on
slipping wheels. Control systems allow power to be transferred mechanically to non-
slipping wheels so that power is not wasted.

In an electric motor system, each wheel is independently controlled. Slipping is prevented
by independent control of the electric motors. Controlling the separate motors enables
traction control resulting in superior performance when operating the vehicle.[2] There
are several patents in this area that would need to be dealt with if pursued.[3][4]

Marketing Requirements

* Reliable enough to work for races

e Durable enough for a race

» Inexpensive enough to be marketed towards autocross/track-day racers as per the
scenario in the competition

» Comfortable and high-performance enough for autocross/track-day racers

» Programmed and designed to be quick enough to win the race while meeting
competition requirements

» Capable of regenerative braking to recharge batteries

» Capable of providing intelligent power delivery to enable traction control
functionality.

» Safe enough for a autocross/track-day racer to be willing and to meet competition
requirements

 Efficient enough to meet competition requirements and make good use of
available battery power

» Long-lasting enough to complete the competition with available battery power

« Must meet all of the rules of the competition

2

Below in figure 1 is the objective tree for our design. The objective tree essentially is a hierarchical
representation of our marketing requirements. This allows us to organize our requirements in a way that is

easier to understand than being in a list form.

Objective Tree

SAE Formula
Electric Car

Efficient

High Performance

Inexpensive and
Standardized Parts

Safe

Regenerative
Braking

Make Efficient use
of Energy

Powerful Motors
with Suflicient
Electric Supply

Traction Control

Warning Light and
Sound at Startup

Compliant with
Competition Rules

Contains Necessary
Safety Kill-
Switches

Figure 1: Objective Tree

Design Requirement Specification

Marketing
Requirements Engineering Requirements Justification
5,6,7 System must receive input from This allows the controller to
Throttle, Steering, Brake, Wheel use torque monitoring and
regenerative braking for the
vehicle.
1 At a max speed of 60mph, the wheel This ensures that the wheel
sensor must be able to sense the teeth of | speed will be measured
the wheel at 16 rps (revolutions per accurately
second)
1 The steering sensor must be able to Sensor must measure angle
sense movement up to 180 degrees accurately according to the
steering wheel position.
11 Throttle sensors must create a Satisfies rules EV2.3.5 and
redundancy. If the sensor outputs are | EV2.3.6
not within 10% of each other, power to
the motors must be completely shut off.
1,49 System must process inputs and provide | The driver can be updated
information to user display in real time on the
conditions of the cars
batteries and speed
1,5,10 Serial communication between battery | The control system relies on
management system and drive control the battery management
system system to supply power
8,11 High voltage system needs to be The rules of the competition
electrically isolated from low voltage require high voltage to be
system isolated from low voltage
10 System must use the limited power The race car is required to
available efficiently finish the race solely on
electricity.
9,11 Max power drawn from the battery Satisfies rule EV2.2.1
must not exceed 85kW for 100ms
continuously
11 Each sensor must have a separate Satisfies rule EV2.3.8
detachable connector cable that enables
a check of these functions by
unplugging during electrical test
6,11 Regenerating energy is not allowed at Satisfies rule EV2.2.5
or below 5kph
11 When an analog sensor is used, it must Satisfies rule EV2.3.10

be considered to have failed when is
achieves an open or short circuit

4

condition

11 All parts of the vehicle which may Satisfies rule EV4.4.2
become electrically conductive which
are within 100mm of any tractive
system or GLV component, must
have a resistance below 5 Ohm to GLV
system ground.

Marketing Requirements

1. Reliable enough to work for races

Durable enough for a race

Cheap enough to be marketed towards autocross/track-day racers as per the
scenario in the competition

4. Comfortable and high-performance enough for autocross/track-day racers

5. Programmed and designed to be quick enough to win competition while following
competition requirements

Capable of regenerative braking to recharge batteries

W

>

7. Capable of providing intelligent power delivery to enable traction control
functionality.

8. Safe enough for a autocross/track-day racer to be willing and to meet competition
requirements

9. Efficient enough to meet competition requirements and make good use of
available battery power

10. Long-lasting enough to complete the competition with available battery power

11. Must meet all of the rules of the competition (TBD)

Table 1: Engineering Requirements

Accepted Technical Design

Sensors

The Curtis PB-8 potentiometer will be used in multiple applications in the drive control
system. The throttle pedal will have two Curtis potentiometers measuring the position of
the pedal. Two potentiometers are required for the throttle pedal in order to create a
redundancy. For the drive system to function properly the position measurement from
each potentiometer must be within 10% of each other. If the measurement differs more
than 10% between the two potentiometers the controller then shuts the motors down. The
brake pedal will also be using a potentiometer. Similar to the throttle pedal, the
potentiometer will be measuring the position of the pedal and transmit an analog output
to the motor controllers. The brake pedal position information will allow the racecar to
have regenerative braking. The controllers will be configured for regenerative braking to
occur for the range that begins when the car starts to slow down, and ends when the speed

is Skph.

The steering system of the car will also be monitored by a Curtis potentiometer. The shaft
at the bottom of the steering system will be connected to the potentiometer. As the user
rotates the steering wheel the steering system will turn, rotating the shaft at the bottom.
As the shaft rotates, the potentiometer will measure the rotation and again send a 0-5V
analog output to the controller. This information will be used for torque vectoring.
Torque vectoring is used be analyzing speed and the angle of the wheel to determine
which motor needs more power. The difference in motors makes the vehicle more
efficient, faster, and ultimately a better vehicle.

The speed of the wheels will be monitored using inductive sensors to provide speed
information back to the controller. The Pepperl & Fuchs inductive sensor will be
mounted perpendicular to the wheel. The sensor functions by detecting the teeth cut out
of the wheel as they pass across the face of the sensor. As the wheel spins the teeth will
be counted and the controller will use that information to help monitor the two individual
motors. The information will be sent as pulses along the output line to the controller.

To ensure the drive system does not overheat a temperature sensor is require per the
given race regulations. The sensor is highly accurate and very reliable. It will be placed
on input lines to the motors to regulate their temperature. If the range goes above, orin a
very rare case, below the programmed range the system will automatically shutdown to
prevent further damage.

Hardware Design

72V DC Battery Power

Theottle Input "| Formula Electric f|———— Left Motor Power
Brake Input 1 Drive Control

Steering Input > System o Right Motor Power

Wheel Speeds

Figure 2: Hardware Level 0 Block Diagram

Module

Formula Electric Drive Control

Inputs

72 V DC Battery Power
Brake Sensor () analog
Throttle Sensor () analog

Steering Sensor () analog
Wheel Sensor (10-30v)digital

Outputs

Left Motor Power
Right Motor Power

Functionality

Utilize input from brake, throttle, steering and wheel sensors to
properly adjust the speed of each motor by delivering the proper
amount of power required. Safety switches internally to shut off
motors in dangerous situations.

Table 2: Formula Electric Drive Control hardware Functional requirements

10-30
vDC

- Brake Sensor

10-30

vDC

- Wheel Sensor

10-30

vDC

- Steering Sensor
10-30

vDC

- Thrgttle Sensor

Figure 3: Hardware Level 1 Block Diagram

0-5v

0-5v

0-5v

YY¥u ¥

Micro Controller

Battery

L

Safety System

¥
Left Moter
Controller

05V

¥

o Right Motor |

Controller

072

072

> Lef Motor

» Right Motor

Module Microcontroller
Inputs Brake Sensor
Wheel Sensor
Steering Sensor
Throttle Sensor
Outputs Right Motor Controller (0-72 V DC)
Left Motor Controller (0-72 V DC)
Functionality The Microcontroller receives the 0 to 5V signals from the sensors and

from that information determines the proper input to the right and left
motor controllers to obtain the speed that the driver needs. The
microcontroller outputs 0 to 5V signals to the motor controllers.

Table 3: Microcontroller Module Hardware Functional Requirements

Module Right and Left Motor Controllers
Inputs 72V DC Power (0-400 A)
0-5V DC Torque Signal and Regeneration Signal
Outputs 0-72V
Functionality The motor controllers use the 0 to 5V input from the microcontroller to

determine how much power to take from the battery and input to the
motor to achieve the desired speed.

Table 4: Right and Left Motor Controllers Module Hardware Functional Requirements

Module

Brake Sensor

Inputs 10-30VDC
Outputs 0-5V
Functionality | The Brake Sensor is powered by 10 to 30VDC and measures the angle

that the brake has been depressed in reference to the hinge between the
brake and the floor. The sensor then sends a 0 to 5V signal to the
microcontroller.

Table 5: Brake Sensor Module Hardware Functional Requirements

Module Wheel Sensor

Inputs 10-30VDC

Outputs 0-5V

Functionality | The wheel sensor is powered by 10 to 30VDC and senses the metal

from the wheel. The sensor is an inductive sensor and it sends a series
of pulses to the microcontroller in a 10-30V signal. Those signals will
be conditioned to be handled as a correct input to the Free Scale
controller.

Table 6: Wheel Sensor Module Hardware Functional Requirements

Module Steering Sensor

Inputs 10-30VDC

Outputs 0-5V

Functionality | The steering sensor is powered by 10 to 30VDC and measures the angle

that the steering wheel is turned to the left or to the right. Based on this
angle, it sends a 0 to 5V signal to the microcontroller.

Table 7: Steering Sensor Module Hardware Functional Requirements

Module Throttle Sensor

Inputs 10-30VDC

Outputs 0-5V

Functionality | The throttle sensor is powered by 10 to 30VDC and measures the angle

that the throttle pedal is depressed in reference to the hinge between the
pedal and the floor Based on this angle, it sends a 0 to 5V signal to the
microcontroller.

Table 8: Throttle Sensor Module Hardware Functional Requirements

Module Safety System

Inputs 2V

Outputs 72V

Functionality | The safety system has ground fault indicator and emergency shut off

switches.

Table 9: Safety System Module Hardware Functional Requirements

¥

Throttle
Sensar

0-

05 Analog

Level Two Hardware Diagram

12

12V e

Battary By
v
L

Safety
> Switches ¥

Yy . ¥

Steering | Wheasl
Sensor | Sensor

L

Brake
Sensor

L

Valtage
Regulator

¥
Lco

Ground
Faull
Indicator

Driver |

L

0-5 Analog
it Ledt Mator

o Coniraller

[OT2V—m Left Motor

oSV v v

>
Micro Controller |
*
»

5 Aralog V Signal

Conditionintg L]

Yy yvy

W
Right Matar |

o8y Cortroller

O-TH—» Right Motor

Figure 4: Hardware Level 2 Block Diagram

Module Signal Conditioning
Inputs Throttle Sensor () analog
Steering Sensor () analog
Wheel Sensors (10-30v) digital
Brake Sensor () analog
Outputs Conditioned sensor signals
Functionality Receives the sensor outputs and conditions them for the microcontroller

requirements

Table 10: Signal

conditioning module Functional requirements

Module Voltage Regulator

Inputs Battery Voltage

Outputs Voltage signal

Functionality Ensures voltage level is maintained at 12 V

Table 11: Voltage regulator module functional requirements

Module Ground Fault Indicator

Functionality Verifies the high voltage system is grounded

Table 12: Ground fault indicator functional requirements

Module Safety Switches

Functionality Confirms that the battery voltage is at a safe level and allows the driver

to shut off system if an unsafe voltage situation occurs

Table 13: Safety

switches module Functional requirement

10

Hardware Design

72V DC Battery Power >
Throttle Input "1 Formula Electric ——— Left Motor Power
Brake Input # Drive Control
Steering Input o System p————p Right Motor Power
Wheel Speeds >

Figure 5: Hardware Level 0 Block Diagram

Module

Formula Electric Drive Control

Inputs

72 V DC Battery Power
Brake Sensor () analog
Throttle Sensor () analog

Steering Sensor () analog
Wheel Sensor (10-30v)digital

Outputs

Left Motor Power
Right Motor Power

Functionality

Utilize input from brake, throttle, steering and wheel sensors to
properly adjust the speed of each motor by delivering the proper
amount of power required. Safety switches internally to shut off
motors in dangerous situations.

Table 14: Formula Electric Drive Control hardware Functional requirements

11

10-30
vDC

- Brake Sensor

10-30

vDC

- Wheel Sensor

10-30

vDC

- Steering Sensor
10-30

vDC

- Thrgttle Sensor

Figure 6: Hardware Level 1 Block Diagram

0-5v

0-5v

0-5v

YY¥u ¥

Micro Controller

Battery

L

Safety System

¥
Left Moter
Controller

05V

¥

o Right Motor |

Controller

072

072

> Lef Motor

» Right Motor

Module Microcontroller
Inputs Brake Sensor
Wheel Sensor
Steering Sensor
Throttle Sensor
Outputs Right Motor Controller (0-72 V DC)
Left Motor Controller (0-72 V DC)
Functionality The Microcontroller receives the 0 to 5V signals from the sensors and

from that information determines the proper input to the right and left
motor controllers to obtain the speed that the driver needs. The
microcontroller outputs 0 to 5V signals to the motor controllers.

Table 15: Microcontroller Module Hardware Functional Requirements

Module Right and Left Motor Controllers
Inputs 72V DC Power (0-400 A)
0-5V DC Torque Signal and Regeneration Signal
Outputs 0-72V
Functionality The motor controllers use the 0 to 5V input from the microcontroller to

determine how much power to take from the battery and input to the
motor to achieve the desired speed.

Table 16: Right and Left Motor Controller Module Hardware Functional Requirements

12

Module Brake Sensor

Inputs 10-30VDC

Outputs 0-5V

Functionality | The Brake Sensor is powered by 10 to 30VDC and measures the angle

that the brake has been depressed in reference to the hinge between the
brake and the floor. The sensor then sends a 0 to 5V signal to the
microcontroller.

Table 17: Brake

Sensor Module Hardware Functional Requirements

Module Wheel Sensor

Inputs 10-30VDC

Outputs 0-5V

Functionality | The wheel sensor is powered by 10 to 30VDC and senses the metal

from the wheel. The sensor is an inductive sensor and it sends a series
of pulses to the microcontroller in a 10-30V signal. Those signals will
be conditioned to be handled as a correct input to the Free Scale
controller.

Table 18: Wheel

Sensor Module Hardware Functional Requirements

Module Steering Sensor

Inputs 10-30VDC

Outputs 0-5V

Functionality | The steering sensor is powered by 10 to 30VDC and measures the angle

that the steering wheel is turned to the left or to the right. Based on this
angle, it sends a 0 to 5V signal to the microcontroller.

Table 19: Steering Sensor Module Hardware Functional Requirements

Module Throttle Sensor

Inputs 10-30VDC

Outputs 0-5V

Functionality | The throttle sensor is powered by 10 to 30VDC and measures the angle

that the throttle pedal is depressed in reference to the hinge between the
pedal and the floor Based on this angle, it sends a 0 to 5V signal to the
microcontroller.

Table 20: Throttle Sensor Module Hardware Functional Requirements

Module Safety System

Inputs 72V

Outputs 72V

Functionality | The safety system has ground fault indicator and emergency shut off

switches.

Table 21: Safety

System Module Hardware Functional Requirements

13

¥

Throttle
Sensar

0-

05 Analog

Figure 7:

Level Two Hardware Diagram

12

12V e

Battary By
v
L

Safety
> Switches ¥

Yy . ¥

Steering | Wheasl
Sensor | Sensor

L

Brake
Sensor

L

Valtage
Regulator

¥
Lco

Ground
Faull
Indicator

Driver |

L

0-5 Analog
it Ledt Mator

o Coniraller

[OT2V—m Left Motor

oSV v v

>
Micro Controller |
*
»

5 Aralog V Signal

Conditionintg L]

Yy yvy

W
Right Matar |

o8y Cortroller

O-TH—» Right Motor

Hardware Level 2 Block Diagram

Module Signal Conditioning
Inputs Throttle Sensor () analog
Steering Sensor () analog
Wheel Sensors (10-30v) digital
Brake Sensor () analog
Outputs Conditioned sensor signals
Functionality Receives the sensor outputs and conditions them for the microcontroller

requirements

Table 22: Signal

conditioning module Functional requirements

Module Voltage Regulator

Inputs Battery Voltage

Outputs Voltage signal

Functionality Ensures voltage level is maintained at 12 V

Table 23: Voltage regulator module Functional requirements

Module Ground Fault Indicator

Functionality Verifies the high voltage system is grounded

Table 24: Ground fault indicator Functional requirements

Module Safety Switches

Functionality Confirms that the battery voltage is at a safe level and allows the driver

to shut off system if an unsafe voltage situation occurs

Table 25: Safety

switches module Functional requirement

14

Hardware Schematic

In figure 8 is the hardware schematic, particularly the sensors, the microcontroller, and
the signal conditioning needed to ensure the circuit will work and microcontroller
provides the motor controllers accurate torque values to send to the motors. These
components are all part of the low voltage system, which is defined as any voltage below
40Vdc or 25Vac rms. The motor controllers can be considered both a low and high
voltage system because they are connected electrically to the batteries, which are above
the 40V threshold at 72V.

Throttle Pedal Sensors

- =0
s,

0

laft Motor Centroller

L] Tower Board

Left Motor Torgque Output 0-5V Input Torgue

Right Mstor Torgque Output

Regenerative Braking Qutput : 0-5V Regenerative Braking Input

Stesring Seasor Right Motor Contreller

5V Input Woltage

PDT“\)\/\ GHD -5V Regenerative Braking Input
L

o = 0-5V Iagub Tesdque

Wheel Senscors

Four Inductive Sensors
ul 2
=]
EH]
=z w2 BE [0
o 1
LM340LAI TOS2
V1
12V = [Title
! Formula SAE Hardware Schematic
Bize Document Nurmber av
= A 1 1
0
Date: Thursday , Movember 15, 2012 heet 1 of 1

Figure 8 Hardware Schematic

A 12V battery was selected as the voltage source for the sensors and microcontroller.
Since some of the sensors and the microcontroller cannot be powered by a 12V input, a
voltage regulator is used to step down the voltage to a 5V input. This voltage can then be
used to supply power to the brake sensor, throttle sensors, steering sensor and the
microcontroller. The wheel sensors have an input voltage range from 10-30V and can be

15

powered by the 12V battery directly. These sensors pulse a 12V digital voltage signal at
the output and this voltage signal needs to be stepped down to a 5V pulse signal to be
measured by the microcontroller. A bipolar digital integrated circuit is used at the output
of the wheel sensors to attain the voltage step down that is desired. The output of the
bipolar digital integrated circuit feeds these SV digital pulse signals to the microcontroller
and the microcontroller counts the number of pulses in a certain time to determine the
speed of the wheel.

The throttle sensors, the brake sensor, and the steering sensor all use a potentiometer to
measure the position of these elements. The 5V source is connected to each of the inputs
of the potentiometers. The throttle and brake potentiometers’ resistances ranges from 0 to
500092 and the output can be anywhere from 0 to 5V analog based on the position of the
wiper. The steering sensor has a resistance range from 0 to 1000S2 and the output is also a
0 to 5V analog signal. The analog output signals from the potentiometers can be sent into
and measured by the microcontroller to determine the position of the steering, brake, and
throttle.

Motor and Battery Sizing

The Drive Control System is independent of what motors are used in the vehicle. As long
as the motors are brushed DC, the same controllers will work. Other types of motors have
controllers with the same interface, and could also be used with a controller change.

For this vehicle, Agni 95R motors were selected in collaboration with the Mechanical
Engineering drive train team. These motors were determined to be the best motors in our
price range in terms of weight, power, and reliability.

To verify that the motors would be acceptable, and that the batteries could meet our
needs, we had to perform calculations of hard acceleration as would be experienced in a
race. To simulate this, we performed a MATLAB simulation of a 75 meter acceleration at
full throttle, from a standing start. The MATLAB code, including assumptions made for
car attributes, is included in the Appendix.

This simulation is also important to ensuring we will be able to complete the 75m
acceleration run in the competition.

16

o P Comsaortes or st (T

accahrma

Figure 9: Graphs of power and acceleration on a 75m acceleration at full throttle.

From the simulation, we learned that the 75m run should take 5.27 seconds at full throttle
and will need ~55kW at top speed.

This is more power than the batteries can maintain for very long, but is acceptable for the
time period of the acceleration run. We also need to know the power consumption profile
of the autocross and endurance events.

To model the autocross and endurance events, we used a picture of a past year’s track
layouts and divided it into separate segments: straights, corners, and slaloms. The
simulation proceeds through these segments, accelerating or braking to stay as close as
possible to the grip-limited fastest possible speed. The slaloms were simplified and
modeled as single curves to match the curvature of each part of the slalom. The maps are
shown in Figure 10 and Figure 11.

17

i 200'+ Shutdown

Yyl
é.‘
¥
=
3
5
s I
A
o
\v ;¢
- s =
s

Figure 10: The autocross course from Lincoln, Nebraska event 2012.[5]

18

LY

“Tn

I
L 1
]
:]
/]

()

\
A

A
@“\\\d\\\t\.
\

Endurance
Spectator

(Bleacher)

.

Endurance
Course ——

,

=

Figure 11: The endurance course from Lincoln, Nebraska event 2012[5]

For the simulation, we assumed a perfect driver who will accelerate as hard as possible at
all times, and who will brake as late and as hard as possible. This driver follows the
racing line shown in the track map, which is a reasonable line.

19

The simulator takes in to account a multitude of forces acting longitudinally on the
vehicle. Braking, rolling resistance, air resistance, and steering forces act against the
forward movement of the car, while driving forces from the motors push it forwards.

The braking force was determined by the brakes subteam to be 1167.094 lbs in the front,
and 120.9058 in the rear. Summing and converting to newtons gives ~5729 N. This is the
maximum force with which the car can brake. Since our simulator is assuming a perfect
driver, this maximum is used for all periods of braking.

To calculate the maximum speed through the curves, Equation (1) is used where r is the
radius of the curve, u is the coefficient of friction between the rubber and the pavement
and g is the acceleration of gravity.

Vmax = /TXUXg (1)

Rolling resistance is the resistance of the tires rolling on the pavement and is given below
where uyp is the coefficient of rolling friction.

Frr = UprXMassX g (2)

The force of air resistance is a function of velocity, and must be calculated at each time
step of the simulation. It is calculated from Equation (3), where p;, is air density, Agis
the measured frontal area of the vehicle, and Cpis the coefficient of aerodynamic drag.
1 3

Fy =EXpairxAFxCDxV2 (3)

Longitudinal forces from steering are the most difficult to calculate and the largest. These
forces are the longitudinal component of the lateral force normal to the front wheels. The

lateral force at maximum cornering velocity is known from the gas formula team as being

approximately 4855 N. This force is related to the square of cornering velocity. The force
is estimated by the equation below.

Vcurrent . Fiateral (4)
Fg = (—)2 XSln(GSteering) X 2
VUmax

The results of the simulations are shown in Figure 12 and Figure 13.

20

E\Q _
% ;
3

"/Lj\\/ﬂrrl“\"n .".Cl”‘(= 3‘5/‘;1

Time i)
. ; : . Arceirrion) : . . B : Emengy Uses .
0—_-_1\“ o J\ nnz:— //”_E/
§ o2 ,~—F'_'_/
t Eon P
3 B o /_FF_‘/._—'-'—""_/
-0 nos- /_'_'J
= T T T T T T T T i T T T T T T T
: 1A 1 .
m| L
for (il
e EE
- / al
= o7 AL 1 AL | |
L] " 1% e T i) £ n = - E E) A D.,'ﬁw =) o0 e £
Figure 12: Results of the autocross simulation.
.) .) Velocky .)) M ot : : : Puawar . . .
=t 4 ot i
£ sl L/\M/UMW 1 z3t -
Lo g it i
8 - 1 i _1’--_ -
. i . (I . (.
o o a n - Ll =2 & o 10 o E . 4 s B
Al errtion N Energy Uend i
% :: : g:‘:-)// :
| l N
5, F = . = = = b i : = . = = =
! i Gattery Currest : Spend Limity
o]
E ﬂ AI\’I A(L /_l\ﬂ kS H \|_|Ji—k_
ol A —] o L J
° W na'n r’—:! fi/.': =] g = = E = 0
Tirrm ish Fasition fmi

Figure 13: Results of the endurance simulation.

21

These results show a low power consumption overall, with very large spikes in the
straight sections of the course. The Speed Limits graph shows the maximum grip-limited
speed at each meter of the course. The breaks in the line show the straights where the
speed is not grip-limited.

The simulation also outputs that the vehicle will complete the 1078 meter course in 67.81
seconds. This single lap will consume 0.306 kWh of energy, at an average rate of 14.632
kW. Energy consumption is not important for the autocross event, but if this usage is
extrapolated out to the 22km endurance event distance, total energy is found to be 6.24
kWh. This is over the 5.5 kWh maximum allowed by the rules, but does not include any
possible gains from regenerative braking. These results show that the system will have to
track energy usage as well as race quickly. The average power draw, around 200 A, is
also at the limit of what the batteries can supply. It is likely that a real driver will not be
able to push the vehicle to this limit, but to prevent damage to the batteries, the drive
control system will have to keep a slow moving average of battery current. Using this
information, the system can reduce the maximum torque allowed as current used
increases.

By simply reducing the maximum allowed torque by 20%, the simulation shows a lap
completion time of 70.1 seconds with 0.265 kWh, at an average rate of 12.257 kW.
Extrapolated out, this is 5.41 kWh. This is within the allowed energy consumption.
Reducing maximum torque by 20% is not a good solution, but will not likely be
necessary since the simulation assumes such a perfect driver and the ability to fully
accelerate even in the turns.

Sensor Calculation

In order to pick an inductive sensor wheel sensor calculations had to be made. At a
maximum speed of 60mph, the number of revolutions of the wheel per second had to be
determined. Doing so resulted in the finding of 16 revolutions per minute. By adjusting
the teeth cut into the wheel accordingly, the 500 hz specification of the sensor will
function correctly. The calculation is shown below.

C=2nr=2(10) r=5.23 ft

5280

1008.4
P 16.8 rps

22

Wiring System

It was also important to calculate Voltage Loss that will occur in the wiring in the
vehicle. Losses will vary depending on the both the length of the wire, and the cross
sectional area (gauge) of the wire. The voltage loss can be calculated using ohm’s law
V=I*R. Resistance will be calculated as R = (p*L)/A. With p=resistivity. Copper wire
will be used in the vehicle therefore the resistivity will be 1.712 x 10™* ohm meters @25°
C.

Software Design

The software system of the project is what controls the motors through the motor
controllers. It needs to take the signals provided by the hardware system and determine

how much torque to apply to each drive wheel. The entire software system runs on a
Freescale TWR-K40X256. The TWR-K40X256 is a 32-bit ARM Cortex-M4
development kit.

Freescale is a large supplier in the automotive industry, and the exclusive supplier for
NASCAR embedded solutions. Freescale runs an extensive University Program, and
generously donated the TWR-K40X256 and selection and development assistance.

Below are several iterations of the software system design.

Level Zero Software Diagram

Throttle Signal » . »-Right Torque Signal
Formula Electric
Brake Signal » Drive Control » Left Torgque Signal
Steering Signal » System R ol
Wheel Signals » > egen Signa

Figure 14: Software Level 0 Block Diagram

Module Formula Electric Drive Control

Inputs Brake Signal
Throttle Signal
Steering Signal
Wheel Signal

Outputs Left Motor Torque
Right Motor Torque

Functionality Samples the signals and outputs appropriate motor torques for
turning angle and throttle.

Table 26: Formula Electric Drive Control software Functional requirements

23

Level One Software Diagram

LCD

Driver Display
Module

Speed, State of Charge

Desired Left Motor
Torque (C Variable)

Input Signal Throttle (C Variable}——»

Filtering and Brake (C Variable) » Drive Control

Processing ! . Module
Madule Steering Angle (C variable}— Desired Right Motor

Wheel Speeds (4 C Variables) » Torque (C Variable)

»
»

—Current—>
State of
Charge

BMS
Communication
Module

Analog Throttle———»

Analog Brake
Analog Steering Angl
Digital Whee! Speeds (x4)

A

Sensors BMS

Figure 15: Software Level 1 Block Diagram

Qutput Signal
Processing
Module

Desired Left Motor
Torque (Analog 0-5V)

Desired Right Motor

Torque (Analog 0-5V)

A

Kelly KDZ72551
Motor Controllers

Module Drive Control Module

Inputs Digital wheel speed values
Digital throttle values
Digital brake values
Digital steering values
BMS current

BMS state of charge

Outputs Desired torque values
Output information to driver
Communication with BMS

Functionality Determine, from signal inputs, how much torque to apply at each of the
wheels to best perform the driver’s desired actions. Also output important
performance and health information to a driver display module, and to the

24

| BMS system.

Table 27: Drive Control Module software Functional requirements

Module

Input Signal Filtering and Processing Module

Inputs

Digital pulse wheel speed signals (0-5V DC)
Analog throttle signals (0-5V DC)

Analog brake signals (0-5V DC)

Analog steering signals (0-5V DC)

Outputs

Digital wheel speed values
Digital throttle values
Digital brake values
Digital steering values

Functionality

Condition the sensor signals for the Drive Control Module.

Table 28: Input signal filtering and processing module Functional requirements

Module Output Signal Processing Module
Inputs Desired left torque value
Desired right torque value
Outputs Analog left torque signal (0-5V DC)
Analog right torque signal (0-5V DC)
Functionality Condition the torque values from the Drive Control Module for

transmission to the motor controllers.

Table 29: Output signal processing module Functional requirements

Module Driver Display Module

Inputs Values to be displayed

Outputs Signals to LCD to display inputs
Functionality Take values and display them on the LCD.

Table 30: Driver display module Functional requirements

Module BMS Communication Module
Inputs Any statuses to relay to the BMS

Any statuses from BMS to relay to drive control
Outputs Any statuses to relay to the BMS

Any statuses from BMS to relay to drive control
Functionality Handle communication between BMS and drive control.

Table 31: BMS communication module Functional requirements

25

Level Two Software Diagram

Microcontroller Software

Driver Display
Module

>

State af
Charge

—Speed-e

. Desired Left Motor
Throttle (C Wariable j— Torque (C Variable]
——Brake (C Variable———] Drive Control

Module

—>
Input Signal

Processing !
Module —\Vheel Speeds (£ C Variables = Desired Right Motor

——>Stesring Angle (C variable}— | Torgue {C Variable)

T

Output Signal
Processing
Maodule

State of s

Charge

Max Allowed_.,
Current

Digital Throttle——m»

Deasired Left Motar
Taorgue (Digital)
Torque (Digital)

Desired Right Motor

EMS
Communication
Madule

i—Digital Steering Angl

——Digital Brak

_l
I

ADCs

L

I
—_

I__—Analog Throttg=—-

Digital Wheel Spaads (x4}
=]
i
o
w

m

=

w
—

Desired Left Mator
Torgue {Analog 0-5Y)

Analog Brake——b'l

—Analog Steering Angle—b-i

Desired Right Motor
Torgue (Analog 0-5V)

[

_|
[
"
[
[

| Sen . | Kelly Motor
' ensors [' Controllers |

Figure 16: Software Level 2 Block Diagram.

26

Module

Drive Control Module

Inputs

Digital wheel speed values
Digital throttle values
Digital brake values
Digital steering values
BMS health statuses

Outputs

Desired torque values
Output information to driver

Functionality

Determine, from signal inputs, how much torque to apply at each of the
wheels to best perform the driver’s desired actions. Also output important
performance and health information to a driver display module.

Table 32: Drive Con

trol Module Functional requirements

Module

Input Signal Processing Module

Inputs

Digital wheel speed pulse signals (0-5V DC)
Digital throttle signals (0-5V DC)

Digital brake signals (0-5V DC)

Digital steering signals (0-5V DC)

Outputs

Wheel speed values in C variable
Throttle value in C variable
Brake value in C variable
Steering value in C variables

Functionality

Gets input values from the ADCs connected to the sensors and puts them
into correctly formatted C variables for use by the Drive Control Module.

Table 33: Input Sign:

al Processing Module

Module Output Signal Processing Module
Inputs Desired left torque value
Desired right torque value
Outputs Digital left torque value
Digital right torque value
Functionality Takes the desired torque values from the drive control module, formats

them, and outputs them to the DACs connected to the Kelly Controllers.

Table 34: Output Signal Processing Module Functional requirements

Module Driver Display Module
Inputs Speed
State of charge
Outputs Signals to LCD to display inputs
Functionality Take values and sends them to the onboard LCD controller for display.

Table 35: Driver Display Module Functional requirements

Module BMS Communication Module

Inputs Any statuses from BMS to relay to drive control

Outputs Any statuses from BMS to relay to drive control

Functionality Interface between the CAN bus and the program on the microcontroller.

Table 36: BMS Communication Module Functional requirements

27

The above diagrams show a conceptual view of the software system. A more code-centric

diagram is shown in Figure 17.

Overall Software Architecture

~ Shadow Copy

ThrottlePosition1

Interrupts

___‘k_________ -

Main loop [I ThrottlePosition2

S BrakePosition

__‘L_______

Input Timer ISR

’ Wheel Speed
GPIO ISR

— SteeringPosition -«
| Control Logic o g ChargeStatus
i - - >
| «—
H— Current
i PreviWheelTimes(x4) -l
WheelSpeeds(x4) |
> LeftTorque '
> RightTorque
> RegenQutput

Figure 17: The overall software architecture

» Output Timer ISR
>

The design stores all of the working data in the “Shadow Copy.” This way, the control
logic simply operates on a set of variables, without having to be concerned with 1/0. It

also helps separate the different types of inputs and ouputs.

The Input Timer ISR handles inputs that don’t require particularly fast sampling, such as
the steering, throttle, and brake. The Output Timer ISR handles the outputs to the motor
controllers. Each of these are on timer interrupts so that the frequencies can be adjusted

easily.

The Wheel Speed GPIO ISR handles the digital pulses coming from the wheel sensors.
The interrupt will be triggered by a positive edge on any of the GPIO pins with wheel

speed sensors.

28

Input Timer ISR

v

Sample steering
from ADC

Y

Sample pedals
from ADC

k4

Convert sampled
values to control
units

¥
Store inputs in
SteeringPaosition,
ThrottlePosition1,
ThrottlePosition2,
and BrakePosition

End

Output Timer ISR

;:' Start

L

Copy LeftTorgue,

RightTorque, and

RegenQutput frem
Shadow Copy

Convert outpuls to
value for DAC

SN S

Send values to
respective DACs

End

Wheel Sensor ISR (x4)

Start

h J

Get
PraviWhaalTima
and current time

from a counler

v

Calculate time
elapsed since last
pulse

[, S

Calculate speed
from elapsed time

v

Store WheelSpeed
and new
PrevWheelTime in
Shadow Copy

End

Figure 18: Interrupt flow charts

Figure 18 shows the code flow of the I/O interrupts. The input and output timer ISRs
simply move values between the Shadow Copy and the ADCs and DACs, while
converting between the format for the control logic and the analog outputs.

The Wheel Sensor ISR is more complex. The Shadow Copy contains four wheel speeds,
one for each wheel. It also contains four values showing time references for when the last
pulse was received, for each wheel. The faster the wheel spins, the less time between
pulses from the sensors. From the time between pulses, the wheel sensor ISR can
calculate wheel speeds.

29

o/'.. i ..\\'.
[start (int main()) |
hN /

h 4

Initialize and start
Reset _ timers, Shadow

Copy, counters,
ADCs, and ISRs

_~BrakePosition ™.

True >0 P False
.
—
LeftTorque =0
RightTorque =0
A J
Calculate and
Store Torque
Y Outputs
,,//\\‘\
,/\/zf'ehicleSpeer\!\‘\ RegenCutput =
7 True® prakePosition

-
-
-
-

S >5kph -

Sy

False i

Read Current and .
ChargeStatus in "~ Has CAN ™
4—Yea—<\\ Message? >

.
s

message from
EMS

"
.

Set ChargeStatus No
in Shadow Copy

l ,

Set Current in
Shadow Copy
using weighted
average with
previous value

Update Display

Figure 19: Control Logic flow chart

The main control loop is running constantly in the main function. Before it begins
looping, it has to initialize everything. It will initialize the Shadow Copy, setup and start

30

the timers for the input and output routines, configure the ADCs and DACs for those
outputs, configure and start the counter for the wheel speed calculations.

This control loop also checks the CAN peripheral for any messages from the EMS. The
main purpose of this loop though, is to calculate and store the torque outputs. The torque
calculation has a darker border because it is detailed below in the pseudocode.

The torque calculations are based off of steering angle, throttle position, and vehicle
speed. If the current has been higher than it should be, the torque will also be reduced by
some multiplier based on how far above spec the current has been.

The exact process for determining the torque to apply to each wheel will be dependent on
the decisions made by the steering and suspension teams on different aspects of the
handling of the vehicle. It will also depend somewhat on driver style; whether they want
more oversteer or understeer. Because of these dependencies, the process has not yet
been determined, but the general approach will be to reduce power to the inside wheel by
a certain amount, and increase the power on the outside wheel by the same amount.
Through this “torque vectoring,” the vehicle will deliver the same force to the wheels
regardless of steering angle, but will bias it towards one side or the other to help steer the
vehicle. This will make it more predictable, as a particular throttle position will always
deliver the same total force, and it will also be able to turn more effectively, but using
motor power to assist in steering.

In addition to the torque vectoring, these calculations also implement the traction control
in the vehicle. The controller will cut power to a drive wheel if it is spinning more than
10% faster than the front wheel on that side. A drive wheel spinning faster that it’s
corresponding front wheel indicates that it does not have traction, and is not delivering
power to the road and will slide laterally more easily. Thus, a spinning wheel will lose
power until it is rolling normally at the same speed as the other wheels, and then power
delivery will resume.

The control loop also implements one of the safety rules regarding the redundant throttle
sensors. If the two throttle positions differ by more than 10%, the motors are not
powered.

31

#define SLIP_RATIO 1.1 // Adjustable amount of slipping/error to allow in wheel speed
measurements

void CalculateAndStoreTorques()
{
float LfWheelSpeed, RfWheelSpeed, LrWheelSpeed, RrWheelSpeed;
// TODO: Copy wheel speeds from Shadow Copy to these local variables
float SteeringAngle, ThrottlePositionl, ThrottlePosition2;
// TODO: Copy from Shadow Copy to these local variables

float ThrottleDiff = ThrottlePositionl - ThrottlePosition2;
ThrottleDiff /= ThrottlePositionl + 1; // +1 to avoid division by zero

float ThrottlePosition = (ThrottlePositionl + ThrottlePosition2) / 2; //Average
throttle position for calculations

float VehicleSpeed = (LfWheelSpeed + RfWheelSpeed) / 2; //Speed of the vehicle. Rear
wheels are more likely to be slipping, so not used.

float PowerManagementMultiplier = GetPowerLimit(Current); // Get multiplier to limit
torque based on battery current

if (ThrottleDiff »= 0.1) // Safety check for disparity in throttle sensors

{
//No torque if the throttle sensors dont agree within 10%
LeftTorque = 0;
RightTorque = 8;
// TODO: Alert the driver
return;
}

if (LfWheelSpeed < LrWheelSpeed / SLIP_RATIO) // If the left drive wheel is slipping,
don't apply torque
{

LeftTorque = @;

¥

else
//Calculate torque based on steering angle, throttle position, and vehicle speed
LeftTorque = GetLeftTorque(SteeringAngle, ThrottlePosition, VehicleSpeed);
LeftTorque = LeftTorque * PowerManagementMultiplier;

}

if (RfWheelSpeed < RrWheelSpeed / SLIP_RATIO) // If the right drive wheel is slipping,
don't apply torque

{
RightTorque = 8;

¥

else

{
//Calculate torque based on steering angle, throttle position, and vehicle speed
RightTorque = GetRightTorque(SteeringAngle, ThrottlePosition, VehicleSpeed);
RightTorque = RightTorque * PowerManagementMultiplier;

}

// TODO: Store the torque outputs

Figure 20: Torque calculation pseudocode

32

Parts List

Table # Revised Material Cost

33

Unit Total

Qty. Part Num. Description Cost Cost
3|PB-8 Curtis PB-8 Potentiometer Box $95.00] $285.00
1|LM340LAZ-5.0/N{IC REG LDO 5V .1A TO92-3 0.95 0.95
1| TD32003APG(O,NIC DRIVER DARL SNK TTL 7CH 16DIP 0.92 0.92

4|NBB8-18GM30-E]Inductive Sensors

2|KDZ J1 KDZ J1 Cable 19.00 38.00
2|KDZ J2 KDZ J2 Cable 19.00 38.00
2|KDZ72551 KDZ PM Motor Speed Controller 459.00 918.00
2| ZJW400A Main Contactor ZJW 72VDC Coils 400A 69.00 138.00
1| CNN 800A Fuse 15.00 15.00
1 Fuse Holder 7.00 7.00
1 USB to RS232 Conwerter 29.00 29.00
1|SP22E-1K Precision Potentiometer 1W 1KQ 19.23 19.23
1|KTY83/122 Temperature Sensor 1.02 1.02
Total| $1,490.12

Project Schedules

[Task Name | Duration | Start | Finish |PredResource Names
Project Design 75 days Fri 83112 Wed 11714112
Preliminary Design Report 14 days Fri 813112 Fri 914712
Problem Statement 14 days Fri 8/31112 Fri 9/14/12
Nead 7 days Fri 8/31112 Fn 9712 Nick Gatia
Objective 7 days Fri 8/31112 Fn 9/7/12 Tyler Zoner
Background 7 days Fri 8/3112 Fri 9712 Mick Gatta
Marketing Requirements 7 days Fri 831112 Fri 9712 Tyler Zoner
Objective Tree 14 days Fri 8/31112 Fn 91412 Alex Spickard
Preliminary Design Gantt Chart 14 days Fri 831112 Fri 9/14/12 Alex Klein
Block Diagrams Level 0 w! FR tables 14 days Fri 83112 Fri 914112
Hardware modules (identify designer) 14 days Fri 8/31/12 Fri 9/14/12 Alex Spickard
Software modules (identify designer) 14 days Fri 83112 Fri 9/14/12 Alex Klein
Preliminary Design Presentation 3:15PM ASEC 120 0 days Fri9/14/12 Fri9/14/12 12 Akx Kiein Alkex Spickar)
Midterm Report FREFRHAE Sat 911512 Mon 10/15/12
Design Requirements Specification 13 days Sat 91512 Fri 9/28/12 Nick Gatta
Midterm Design Gantt Chart 13 days Sat 91512 Fri 9/28/12 Alex Klein
Design Calculations FHER Sat 91512 Mon 10/15/12
Electrical Calculations T Sat 911512 Mon 10/15/12
Communication 30 days Sat 9M5M2 Mon 10/15M12 Alex Klein
Sensor Communication 30 days Sat WMSM2 Mon 1011512 MNick Gatia
Communication with BMS 30 days Sat w1512 Mon 101512 Alex Klein
Computing 30 days Sat 91512 Mon 1011512 Alex Klein
Develop control algorithms. 30 days. Sat 91512 Mon 10M5M2 Adex Klein
Control Systems 20 days Sat 91512 Fri 10/5/12 Tyler Zoner
Power, Voltage, Current HHHERE Sat 91512 Mon 101512 Alex Spickard
Lap power and energy simulation 30 days Sat /1512 Mon 10/15112 Aex Klein
High voltage wiring dagram 30 days Sat 31512 Mon 1001512 Adex Spickard
Radiation 20 days Sat 911512 Fr 10/5/12 Alex Spickard
Thermal 30 days Sat 91512 Mon 10/15/12 Alex Spickard
Work with mechanicals to cool motors and controliers 30 days Sat 9/1512 Won 10/15/12 Aex Spickard
Mechanical Calculations 30 days Sat 91512 Mon 10/15/12
Structual Considerations 20 days Sat 91512 Fri 10/5/12 HNick Gatta
System Dynamics 30 days Sat 91512 Mon 10/15/12 Mick Gatta
Block Diagrams Level 1 w/ FR tables & ToO 13 days Sat 91512 Fri 9/28/12
Hardware modules (identify designer) 13 days Sat 9/115M12 Fri 9728112 Tyler Zoner
Power Delivery 13 days SataM&M2 Fri /2812 Tyler Zoner
Safety systems 13 days Sat 91512 Frisizana Alex Spickard
Sensors 13 days Sat 91812 Fri 2812 Nick Gatta
Software modules (identify designer) 13 days Sat 9M5M2 Fri 9/28M12 Alex Klein
Signal Processing 13 days Sat 915112 Fri9/an2 Az Klein
Control Algorithm 13 days Sat 91512 Frigizan2 Alex Kiein
Block Diagrams Level 2 wf FR tables & ToO 20 days Sat 91512 Fri 10/5/12
Hardware modules (identify designer) 20 days Sat 9/15M12 Fri 10/5/12 Tyler Zoner
Software modules (identify designer) 20 days Sat 91512 Fri 10/5/12 Alex Klein
Block Diagrams Level N+1 w/ FR tables & ToO 30 days Sat 91512 Mon 10/15/12
Hardware modules (identify designer) 30 days Sat 91512 Mon 101512 Tyler Zoner
Software modules (identify designer) 30 days Sat 91512 Mon 10/15/12 Alex Klein
Project Poster 11 days Mon 10/15M12 Fri 10/26/12 17 Ak Klein, Alex Spickar|
Final Design Report 30 days. Mon 10/15M12 Wed 11/14M12 =0
Abstract 30 days| Mon 10/15/12 Wed 11114/12
Software Design 30 days| Mon 10/15M12 Wed 11/14/12
Modules 1...n 30 days| Mon 101512 Wed 111412
Simulation 30 days| Mon 10/1512 Wed 1111412 Aex Klein
Psuedo Code 30 days Mon 10/15/12 Wed 1111412 Alex Klein
Hardware Design 30 days| Mon 10/15M12 Wed 111412
Modules 1...n 30 days| Mon 10/15/12 Wed 11/14/12
Work with Mechanicals to fit in car 30 days| Mon 10/15/12 Wed 1114112 Hick Gatta
Schematics 30 days| Mon 101512 Wed 111412 Tyler Zoner
Performance Analysis of Motors 30 days| Mon 10/15M12 Wed 1114112 Alex Spickard
Parts Request Form 30 days| Mon 10/15M12 Wed 111412 Alex Spickard
Budget (Estimated) 30 days| Mon 10/1512 Wed 11114112 Alex Spickard
Implementation Gantt Chart 30 days| Mon 101512 Wed 111412 Hick Gatta
Conclusions and Rec | 30 days| Mon 10/15/12 Wed 11/114/12 Tyler Zoner
Final Design Presentation Part 1 3:15PM ASEC 120 Odays Fri11/16/12 Fri 11/16/12
Final Design Presentation Part 2 3:15PM ASEC 120 0days Fri11/30/12 Fri 11/30/12
Final Design Presentation Part 3 3:15PM ASEC 120 0 days Fri12/7112 Fri12/7112

Table 37: Final Design Gantt

34

[‘agk Mame Duration Stan Frish Pradel Weak Resourcs Names
o | | |
1 [Ed Revise Gantt Chart Sdays Mon1f413 Tue 12213 1
] Implement Project Design 28.5 days?| Sun 14313 Mon 24113
3 Order Kely controliers 1day? Mon 11413 Tee 11513
4 | Order cabing for motors and controders 1day? Mon 11413 Tue 11513
5 Order sensors 1day? Mon 11413 Tue 11513
[Order connectors and wires for sensors 1day? Mon 11413 Tee 11513
7 Hardware Implementation 28.5days?| Sun 14313 Mon 211143
8 sensor implementation 285 days? sun 11313 Mon 21113
] \Wire wheel sanscrs to controller 1day? Mon 11413 Tue 11513 Nick Gatta
I Test whee! sensors wih controlles 10days Sun 11313 Wed 123913 Nick Gatta
" Develop program for traction control 28 days Mon 11413 Mon 211113 Adex Klen
12 | Wire potentiometers to controler 1day? Monif413 Tue 11513 Nick Gatta
13 |14 Test potentiometers with contreler 10days Sun 11313 Wed 123013 Nick Gatta
14 | Dewvelop programs for regeneratve brakein 25days Mon 14413 Mon 2M11113 e Klein
g Motor implementation 21 days? Mon 11413 Mon 21443
18 Wire serial VO connecter Tday? Men 71413 Tue 11513 Tyler Zongr
a7 | Test mators with motor controliers Fdays Mon 14413 MWon 2413 Tyler Zoner
18 | Safety implementation 1B.5 days?| Mon 114413 Fri 243
19 Wire voltage reguistors. 1day?| Mon 11413 Tue 111513 Tyler Zoner
20 |54 Test votage regulators 14 days Fri 11813 Fri2Hi3 Tyler Zoner
21 | Wire temperature sensors Tday? Mon 11413 Tue 11513 Nick Gatta
|22 | Test tamperature zensors ladays Fri1A&13 Fri2An: Nick Gatta
23 | Wire ground fauk indicator 1day? Mon 14413 Tee 11543 Tyler Zoner
24 Tes! ground faull indicator 14 days Mon 111413 Men 172813 Tyler Zoner
25 Wire emergency switches 1day? Mon 11413 Tue 11513 Adex Spickard
26 | Test emergency switches 14days Mon 11413 Mon 172813 Alex Spickard
7 Software Implementation B days? Mon 11413 Tue 12213
28 Develop Software 1day?| Mon 14413 Tue 11543
ER Control Loop 1day?| Mon 144143 Tue 11543 Alex Kiein
30 CAN messaging with EMS Tday? Mon 11413 Tue 11513 Alex Klgn
BE Torgue vectoring 1day? Mon 11413 Tue 11513 Alex Klein
| 32 | Safety shutoffs Tday? Mon 11413 Tue 11513 Alex Klein
33 Input Timer ISR 1day? Mon 11413 Tee 11513 Tyler Zoner
34 Output Timer ISR 1day? Mon 11413 Tue 11513 Tyler Zoner
35 Wheel Sensor 1SR 1day?| Mon 114413 Tue 11513 Tyler Zoner
3 | Calculating spaads from period 1day? Mon1H4M3 Tue 1MSH3 Tyler Zoner
37 Test Software 1day?| Mon 14413 Tue 11543 5
In lab (with oscilioscopes and manual sens 1day? Meon 11413 Tue 11513 Adex Klein
N In cer 1day? Mon 14413 Tue 11513 Tyler Zoner
|40 | Revise Software 1day? Mon 11413 Tue 11513 T
41 Fix any problems from test 1day? Men 11413 Tue 11513 Tyler Zoner
42 Tune torgue vecioring with ME team 1day? Mon 11413 Tue 11513 Al Klein
43 WIDTERM: Demonsirate Software Tdays Tue 11513 Tue 12201342 aAl
[as | Vehicle Integration a0 days? Tue 12213 Fridi1213 43
45 High voltage wiring 8days| Tue 42213 Wed 13043
Wount high vollage companenels Sdays Tue 12213 Wed 173013 Tyler Zoner
a7 | Cut cables appropristaty 1day Tue 122113 Wed 12313 Al
Wire componenis Jdays Tue 12213 Fri12313 Nick Gatia Tyler Zond|
43 ntegrate safely compenents Sdays Tue 12213 Wed 13013 Al
0 Low voltage wiring 14days Wed 13013 Wed 213143
s1 |54 Wount motors in vehicle 7days Wed 13013 Wed 28/13 Al
52 |5 Wount motor controllers in vehicle Tdays Wed 13013 Wed 2613 Al
53 |&= 'Wiire the motors to motor conirollers. 3 days Fri2a"13 Mon 2111113 52 Nick Gatta, Tyler Zon
54 Aun ighition wire theaugh vehick Tday Men21113 Tue 2121353 Alex Spickard
55 |5 Develop & wiring harness. 2days Mon 2A1A3 Wed 2313 e Spickard
56 | Battery System Integration B0days| Tue 102243 Fri 41213
=7 Work Closely with BMS Team a0days Tue 12213 Fri4N2ni AN
| Insert Batteries in to Electric vehicle Tdays Mon 2113 Men 211813 Al
55 |54 Install CAN Communication system info vehicke Idays| Tue2M9M13 Fri2@2M3 Tykr Zoner
i Verity CAN Communication i oparational 1day Mon 22513 Tue 202613 Tyler Zoner
&1 | Vehicle Testing 38 days?| Wed 212013 Sun 3313
62 |74 Medify Motor Contraller Parameters 7days) Wed 22013 Wed 22713 Alex Spickard
BCEN Check Safety System Gdays Mon 22813 Sun 303 Nick Gatta
=] Tune Torgue Vectoring Parameters 15 days FriZif3 Sat 31813 Alex Klein
8s E Test Regenerative Braking 15 days Fridring Sat 31813 Adex Klein
L Assemble Complete Syatem 14 days Tue 226M3 Tue 3213 Al
&7 | Test Drive Race Car 1day? Tue 31213 Wed V131366 All
Test Complate Systam 13days Wed 313NI Sun FINIET 1041
Ravise Complete System 18days| Tue3A2M3 Sat J30M366 Al
Demonstration of Camplete System Odays Sat3G013 Sat WI0M3IES 1340
Develop Final Report 93 days| Mon 14443 Wed 41713
Write Final Repart S3days| Mon1M413 Wed 41713
Revise final report 3days Sun 41413 Wed 41713
Submi Final Report Odays| Wed 41713 Wed 41711374 15
76
T Martin Luther King Day - Univereity clozed 1day Mon1M14M3 Tue 11513
76 |Ed Spring Recess Gdays Mon 32513 Sun 33113
79 E Project tration and 1 day Fridn2n3 Sat 41313 12
20 |74 Faraday Banquet Tday Fri426M3 Sat42713 15
| 81 |Td Senior Design Expo 1day Wed 42413 Thu 42513 15
a2 | Go to Formula SAE Competition Jdays Wed 64943 Sat 62243
= Win Formula SAE Competition Jdays Wed 61913 Sat&E213

Table 38: Proposed Implementation Gantt Chart
35

Design Team Information

Nick Gatta, Electrical Engineer, Archivist

Alex Klein, Computer Engineer, Software Manager
Alex Spickard, Electrical Engineer, Team Leader
Tyler Zoner, Electrical Engineer, Hardware Manager

Conclusion

Producing a functioning Formula SAE Electric Vehicle is a complex process. Research,
calculations, and simulations were conducted during the course of the semester to
produce the components of a functioning drive system. Based on discussions with the
mechanical engineers of the Formula SAE team, the motor and motor controllers were
selected and verified using the Matlab simulations from the report. Many Matlab codes
were written & simulated to ensure the correct motors were chosen. The simulations also
produced results ensuring the regenerative braking and torque vectoring features of the
system will function correctly. The wheel, steering, and pedal sensors all provide vital
information to the system, and research and calculations produced the information for
selecting the sensors. In conclusion, the drive control will provide a safe, efficient, and
effective system to the formula SAE racecar. All in all, the drive control design has been
a great success! It is our hope to in the next couple months work towards ordering parts
and implementing the system we have designed.

36

References

[1] S. E. Lyshevshi, A. Sinha, M. Rizkalla, M. El-Sharkawy, A. Nazarov, P. C. Cho, W.
Wylam, J. Mitchell and M. Friesen, "Analysis and Control of Hybrid-Electric
Vehicles With Individual Wheel Brushless Traction Motors," in American Control
Conference, Chicago, 2000.

[2] L. Shoubo, L. Chenglin, C. Shanglou and W. Lifang, "Traction Control of Hybrid
Electric Vehicle," in Vehicle Power and Propulsion Conference, Dearborn, 2009.

[3] W. E. Earleson, "Traction Control for DC Electric Motor". United States of America
Patent 20100162918, 1 July 2010.

[4] X. T. Tao, T. M. Steinmetz, T.-M. Hsich and W. R. Cawthorne, "Method for
Automatic Traction Control in a Hybrid Electric Vehicle". United States of America
Patent 7222014, 22 May 2007.

[5] "Formula SAE Lincoln 2012 Event Guide," 2012. [Online]. Available:
http://students.sae.org/competitions/formulaseries/west/eventguide.pdf. [Accessed 21
September 2012].

[6] M. Brain, "How Electric Motors Work," HowStuffWorks, Inc, [Online]. Available:
http://electronics.howstuffworks.com/motor1.htm. [Accessed 22 March 2012].

[7] "Formula Student Electric Germany," 26 April 2011. [Online]. Available:
http://www.formulastudentelectric.de/uploads/media/FSE Rules 2011 v1.1.0.pdf.
[Accessed 22 March 2012].

[8] H. Neudorfer, "Comparison of three different electric powertrains for the use in high

performance Electric Go-Kart," in International Aegean Conference on Electric
Machines and Power Electronics, Istanbul, 2007.

37

Appendix

Data Sheets

Sensors

Inductive (x's4)
http://files.pepperl-fuchs.com/selector_files/navi/productinfo/edb/087743 eng.pdf
Cable(x's4)

http://files.pepperl-fuchs.com/selector _files/navi/productinfo/edb/191108 eng.pdf
Encoder

http://files.pepperl-fuchs.com/selector files/navi/productInfo/edb/t49170 eng.pdf

Encoder cable

Potentiometers(x's3)
http://www.electroauto.com/catalog/potbox.shtml
Temperature sensor

http://www.nxp.com/documents/data_sheet/KTY83 SER.pdf

Microcontroller

http://www.freescale.com/webapp/sps/site/prod summary.jsp?code=TWR-
K40X256&fpsp=1&tab=Documentation Tab

MATLAB Simulations for Power Profile
Acceleration Event

PowerSimulation.m

clear all

FrontArea = 1.1148; %sq meters
AirDensity = 1.2250; %kg/cubic meters
DragCoeff = 1.5;

MphPerMs = 2.236936;

WheelRadius = 0.254; %meters (10 inches)
PeakTorque = 50; %NM

38

MaxRpm = 4850; %REM
MechanicalEfficiency = 0.95;
Mass = 320; %kg

GR = 5;

Distance = 75;

TimeDelta = 0.01;

EndTime = 100;

Acceleration = 0; %M/s/s

Velocity = 0; %M/s

Position = 0; % M

MaxSpeed = ((MaxRpm/GR/60) * (WheelRadius*2*pi))
i=1;

while (i <= 100/.01)

ForceDrag = (0.5)*AirDensity*DragCoeff*FrontArea* (Velocity.”2);
ForceAtWheels = 2 * PeakTorque/WheelRadius * GR *
MechanicalEfficiency

if (Velocity >= MaxSpeed)

ForceAtWheels = ForceDrag;
Velocity = MaxSpeed;
Acceleration = 0;
else
Acceleration = (ForceAtWheels - ForceDrag) /Mass;
Velocity = Velocity + (Acceleration * TimeDelta):;
end
Accel (i) = Acceleration;
Position = Position + (Velocity * TimeDelta);
Power (i) = ((ForceAtWheels * Velocity) / 0.9) / 0.95; %taking

into account motor efficiency and drivetrain losses

if (Position > Distance)
fprintf('$f GR: %f seconds at %f mph (Max = %f)\n', GR,
i/100, Velocity * MphPerMs, MaxSpeed * MphPerMs)
break;
end
i=1i4+1;
Times (i) = i*TimeDelta;
end
subplot(2,1,1), plot(Times, Power)

title ('Power Consumption on Acceleration (75m)")
xlabel ("Time (s)')

ylabel ('Power (W) ")

axis ([0 6 0 750001)

grid on

subplot(2,1,2), plot(Times, Accel)
axis ([0 6 0 6])

title ('Acceleration vs Time')
xlabel ('Time (s)')

ylabel ('RAcceleration (m/s”2)"')
grid on

39

Autocross Event

TrackSimulation.m

clear all

clec;

%% Universal Constants

AirDensity = 1.2250; %kg/cubic meters
MphPerMs = 2.236936;

Gravity = 9.81; %m/s/s

%% Car constants

FrontArea = 1.1148; %sg meters
DragCoeff = 1.5;

WheelRadius = 0.254; %meters (10 inches)
PeakTorque = 50; %NM

MaxRpm = 4850; %RPM
MechanicalEfficiency = 0.95;

Mass = 320; %kg

GR = 5;

%$Distance = 85;

TimeDelta = 0.01;

EndTime = 100;

BrakingDecel = 1.77 * Gravity;
FrictionCoefficient = 1.5;
RollingCoefficient = 0.01;
MotorEfficiency = .9;
Wheelbase = 1.524; % wheelbase 5 ft

TrackWidth = 1.2192; % track 4 ft
LateralForceConstant = 4855; %NM

%% Track Definitions

T5%5%% All segments of the track

% A-B

[Distance, Radius, Type, Segment] = autocrossTrack();

NumberSegments = length (Segment);
SpeedLimits = inf;

SteeringAngles = 0;

%% Build SpeedLimits

for i = 1 : NumberSegments
if (Type(i) == 2)
Radius (i) = Radius|(i):
Distance (i) = Distance(i):

SpeedLimits = [SpeedLimits SpeedLimitVector (Radius (i),
Distance (i), FrictionCoefficient)];
steeringAngle = asin(Wheelbase/ (Radius (i) - TrackWidth/2));

SteeringAngles = [SteeringAngles constants (Distance (i),
steeringAngle)];
else
Distance (i) = Distance(i);:
SpeedLimits = [SpeedLimits SpeedLimitVector (inf, Distance (i),
FrictionCoefficient)]:
SteeringAngles = [SteeringAngles constants (Distance (i), 0)1;:

end
end

%% Simulate Lap

40

Position = 0;

Velocity = 0;

Acceleration = 0;

TimeStep = 0;

EnergyLog = 0;

CurrentLog = 0;

PositionLog = 0;

VelocityLog = 0;

AccelerationlLog = 0;

PowerLog = 0;

while (true)
%look ahead for braking
tempPosition = Position + (Velocity * TimeDelta);
tempVelocity = Velocity;

isBraking = 0;
targetVelocity = inf;

while (tempVelocity > 0)
if (round(tempPosition) + 1 > length(SpeedLimits))
isBraking = 0;

break;
else if (SpeedLimits (round (tempPosition) + 1) < tempVelocity)
targetVelocity = Velocity - (tempVelocity -

SpeedLimits (round (tempPosition) + 1));
isBraking = 1;

break;
end
end
if (targetVelocity > Velocity - (tempVelocity -
SpeedLimits (round (tempPosition) + 1)))
targetVelocity = Velocity - (tempVelocity -
SpeedLimits (round (tempPosition) + 1));
end
tempPosition = tempPosition + (tempVelocity * TimeDelta);
tempVelocity = tempVelocity - (BrakingDecel * TimeDelta);
end
DesiredAcceleration = ((targetVelocity - Velocity) * TimeDelta);
ForceDrag = (0.5)*AirDensity*DragCoeff*FrontArea* (Velocity.”"2);
fractionSpeedLimit = (Velocity /
SpeedLimits (min (round(Position)+1,numel (SteeringAngles))));
LateralForce = LateralForceConstant * (fractionSpeedLimit”2);
ForceTurning =

abs (sin(SteeringAngles (min (round (Position)+1,numel (SteeringAngles))))* (
LateralForce/2));
ForceRollingResist = RollingCoefficient * Gravity * Mass;
DesiredForceAtWheels = (targetVelocity - Velocity) * Mass /
TimeDelta + ForceDrag + ForceTurning + ForceRollingResist;

AccelerationMultiplier = sqrt(l-(fractionSpeedLimit”™2));

ForceAtWheels = min (2 *
AccelerationMultiplier*PeakTorque/WheelRadius * GR *
MechanicalEfficiency, DesiredForceAtWheels);

41

if (isBraking == 1)
ForceAtWheels = 0;
BrakingForce Mass * BrakingDecel;
BrakingForce min (abs (DesiredForceAtWheels), BrakingForce);
Acceleration = - (BrakingForce + ForceDrag + ForceTurning +
ForceRollingResist) /Mass;
else
Acceleration = (ForceAtWheels - ForceDrag - ForceTurning -
ForceRollingResist) /Mass;
end

Velocity Velocity + Acceleration * TimeDelta;
Position = Position + Velocity * TimeDelta;

TimeStep TimeStep + 1;

if (Position > length (SpeedLimits))

break;
end
PositionlLog (TimeStep) = Position;
VelocityLog (TimeStep) = Velocity;
Accelerationlog (TimeStep) = Acceleration;
PowerLog (TimeStep) = Velocity * max (ForceAtWheels, 0);
CurrentLog (TimeStep) = ((PowerLog(TimeStep) / 72) / 0.9) / 0.95;
EnergyLog (TimeStep) = EnergylLog(max (TimeStep - 1,1)) +

(PowerLog (TimeStep) / 0.9) / 1000 / 3600 * TimeDelta ;
end

x = TimeDelta: TimeDelta : length(VelocityLog) * TimeDelta;
figure (1)

subplot (3, 2, 1)

plot (x, VelocityLog)
title('Velocity');
xlabel ("Time (s)'):
ylabel ('m/s")

subplot (3, 2, 2)

plot (x, PowerLog)

title ('Power');

xlabel ('Time (s)'):
yvlabel ("kW'")

subplot (3, 2, 3)

plot (x, AccelerationLog)
title ('Acceleration');
xlabel ("Time (s)');
ylabel ('m/s”2")
subplot (3, 2, 4)

plot (x, EnergyLog)

title ('Energy Used'):
xlabel ('Time (s)'):
yvlabel ("kiwh (sum) ')
subplot (3, 2, 5)

plot (x, CurrentLog)
title('Battery Current');
xlabel ('Time (s)');

42

yvlabel ('Amps')

subplot (3, 2, 6)

x = 1: length(SpeedLimits);
plot (x, SpeedLimits)
title('Speed Limits');
xlabel ('Position (m)');
ylabel ('m/s"')

fprintf ('Friction Coeff: %f completed in %f seconds with %f kiWh with
average power: %f kW, average battery current: %f Ampsinin’',
FrictionCoefficient, length(VelocityLog) * TimeDelta,

EnergyLog (TimeStep-1), mean (PowerLog) /1000, mean (CurrentLog))

constants.m

function y = constants(length, wvalue)
$UNTITLED Summary of this function goes here
% Detailed explanation goes here

temp (l:round(length)) = wvalue;

y = temp;

end

SpeedLimitVector.m

function [y] = SpeedLimitVector(radius, distance, friction)
$UNTITLEDZ Summary of this function goes here
% Detailed explanation goes here

MaxSegmentSpeed = sqrt(friction * 9.81 * radius);

y = constants(distance, MaxSegmentSpeed);
end

43

